The Virtual Horizon Lab – February 2020

It’s been a while since I’ve done a home lab update.  In fact, the last one was over four years ago. William Lam’s home lab project and appearing on a future episode of “Hello from My Home Lab” with Lindy Collier has convinced me that it’s time to do an update.

My lab has both changed and grown since that last update.  Some of this was driven by vSphere changes – vSphere 6.7 required new hardware to replace my old R710s.  Changing requirements, new technology, and replacing broken equipment have also driven lab changes at various points.

My objectives have changed a bit too.  At the time of my last update, there were four key technologies and capabilities that I wanted in my lab.  These have changed as my career and my interests have changed, and my lab has evolved with it as well.  Today, my lab primarily focuses on end-user computing, learning Linux and AI, and running Minecraft servers for my kids.

vSphere Overview

The vSphere environment is probably the logical place to start.  My vSphere environment now consists of two vCenter Servers – one for my compute workloads and one for my EUC workloads.  The compute vCenter has two clusters – a 4 node cluster for general compute workloads and a 1 node cluster for backup.  The EUC vCenter has a single 2-node cluster for running desktop workloads.

Both environments run vSphere 6.7U3 and utilize the vCenter Server virtual appliance.  The EUC cluster utilzies VSAN and Horizon.  I don’t currently have NSX-T or vRealize Operations deployed, but those are on the roadmap to be redeployed.

Compute Overview

My lab has grown a bit in this area since the last update, and this is where the most changes have happened.

Most of my 11th generation Dell servers have been replaced, and I only have a single R710 left.  They were initially replaced by Cisco C220 M3 rackmounts, but I’ve switched back to Dell.  I preferred the Dell servers due to cost, availability, and HTML5-based remote management in the iDRACs.  Here are the specs for each of my clusters:

Compute Cluster – 4 Dell PowerEdge R620s with the following specs:

The R620s each have a 10GbE network card, but these cards are for future use.

Backup Cluster – 1 Dell PowerEdge R710 with the following specs:

This server is configured with local storage for my backup appliance.  This storage is provided by 1TB SSD SATA drives.

VDI Cluster – 2 Dell PowerEdge R720s with the following specs:

  • 2x Intel Xeon E5-2630 Processors
  • 96 GB RAM
  • NVIDIA Tesla P4 Card

Like the R620s, the R720s each have 10GbE networking available.

I also have an R730, however, it is not currently being used in the lab.

Network Overview

When I last wrote about my lab, I was using a pair of Linksys SRW2048 switches.  I’ve since replaced these with a pair of 48-port Cisco Catalyst 3560G switches.  One of the switches has PoE, and the other is a standard switch.  In addition to switching, routing has been enabled on these switches, and they act as the core router in the network.  HSRP is configured for redundancy.  These uplink to my firewall. Traffic in the lab is segregated into multiple VLANs, including a DMZ environment.

I use Ubiquiti AC-Lite APs for my home wifi.  The newer ones support standard PoE, which is provided by one of the Cisco switches.  The Unifi management console is installed on a Linux VM running in the lab.

For network services, I have a pair of PiHole appliances.  These appliances are running as virtual machines in the lab. I also have AVI Networks deployed for load balancing.

Storage Overview

There are two main options for primary storage in the lab.  Most primary storage is provided by Synology.  I’ve updated by Synology DS1515+ to a DS1818+.  The Synology appliance has four 4TB WD RED drives for capacity and four SSDs.  Two of the SSDs are used for a high-performance datastore, and the other two are used as a read-write cache for my primary datastore.  The array presents NFS-backed datastores to the VMware environment, and it also presents CIFS for file shares.

VSAN is the other form of primary storage in the lab.  The VSAN environment is an all-flash deployment in the VDI cluster, and it is used for serving up storage for VDI workloads.

The Cloud

With the proliferation of cloud providers and cloud-based services, it’s inevitable that cloud services work their way into home lab setups. My lab is no exception.

I use a couple of different cloud services in operating my lab across a couple of SaaS and cloud providers. These include:

  • Workspace ONE UEM and Workspace ONE Access
  • Office 365 and Azure – integrated with Workspace ONE through Azure AD
  • Amazon Web Services – management integrated into Workspace ONE Access, S3 as a offsite repository for backups
  • Atlassian Cloud – Jira and Confluence Free Tier integrated into Workspace ONE with Atlassian Access

Plans Going Forward

Home lab environments are dynamic, and they need to change to meet the technology and education needs of the users. My lab is no different, and I’m planning on growing my lab and it’s capabilities over the next year.

Some of the things I plan to focus on are:

  • Adding 10 GbE capability to the lab. I’m looking at some Mikrotik 24-port 10GbE SFP+ switches.
  • Upgrading my firewall
  • Implementing NSX-T
  • Deploying VMware Tunnel to securely publish out services like Code-Server
  • Putting my R730 back into production
  • Expanding my knowledge around DevOps and building pipelines to find ways to bring this to EUC
  • Work with Horizon Cloud Services and Horizon 7